

J4230A/31A/32A/33A/34A/35A DWDM Transmitter Modules

User's Manual (Part No. J4230-9002)

Where to Find it - Online and Printed Information:

System installation (hardware/software)VXIbus Configuration Guide*

SpectralBER Installation & System Reference Manual

Module controlThis Manual

SCPI informationSpectralBER Remote Control Manual

SpectralBER Installation & System Reference Manual

SpectralBER Remote Control Manual

Soft Front Panel informationSpectralBER Installation & System Reference Manual

This manual and

J4225A/26A/27A DWDM Receiver Modules User's

Manual

SpectralBER Online Help

VISA language information......VISA User's Guide

*Supplied with Command Modules, Embedded Controllers, and VXLink.

Legal and Safety Information

Agilent Technologies Warranty Statement

Agilent Product: J4230A/31A/32A/33A/34A/35A

Duration Of Warranty: 1 year

- 1. Agilent warrants Agilent hardware, accessories and supplies against defects in materials and workmanship for the period specified above. If Agilent receives notice of such defects during the warranty period, Agilent will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
- 2. Agilent warrants that Agilent software will not fail to execute its programming instructions, for the period specified above, due to defects in material and workmanship when properly installed and used. If Agilent receives notice of such defects during the warranty period, Agilent will replace software media which does not execute its programming instructions due to such defects.
- 3. Agilent does not warrant that the operation of Agilent products will be interrupted or error free. If Agilent is unable, within a reasonable time, to repair or replace any product to a condition as warranted, customer will be entitled to a refund of the purchase price upon prompt return of the product.
- 4. Agilent products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
- 5. The warranty period begins on the date of delivery or on the date of installation if installed by Agilent. If customer schedules or delays Agilent installation more than 30 days after delivery, warranty begins on the 31st day from delivery.
- 6. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by Agilent, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.
- 7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE ABOVE WARRANTIES ARE EXCLUSIVE AND NO OTHER WARRANTY OR CONDITION, WHETHER WRITTEN OR ORAL, IS EXPRESSED OR IMPLIED AND AGILENT SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OR CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, AND FITNESS FOR A PARTICULAR PURPOSE.
- 8. Agilent will be liable for damage to tangible property per incident up to the greater of \$300,000 or the actual amount paid for the product that is the subject of the claim, and for damages for bodily injury or death, to the extent that all such damages are determined by a court of competent jurisdiction to have been directly caused by a defective Agilent product.
- 9. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE CUSTOMER'S SOLE AND EXLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL AGILENT OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE.
- 10. FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

U.S. Government Restricted Rights

The Software and Documentation have been developed entirely at private expense. They are delivered and licensed as "commercial computer software" as defined in DFARS 252.227-7013 (Oct 1988), DFARS 252.211-7015 (May 1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software" as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the Agilent standard software agreement for the product involved.

Responsibilities of the Customer

The customer shall provide:

- 1. Access to the products during the specified periods of coverage to perform maintenance.
- 2. Adequate working space around the products for servicing by Agilent Technologies personnel.
- 3. Access to and use of all information and facilities determined necessary by Agilent Technologies to service and/or maintain the products. (Insofar as these items may contain proprietary or classified information, the customer shall assume full responsibility for safeguarding and protection from wrongful use.)
- 4. Routine operator maintenance and cleaning as specified in the Agilent Technologies Operating and Service Manuals.
- 5. Consumables such as paper, disks, magnetic tapes, ribbons, inks, pens, gases, solvents, columns, syringes, lamps, septa, needles, filters, frits, fuses, seals, detector flow cell windows, etc.

Certification

Agilent Technologies certifies that this product met its published specifications at the time of shipment from the factory. Agilent Technologies further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility and to the calibration facilities of other International Standards Organization members.

Assistance

Product maintenance agreements and other customer assistance agreements are available for Agilent Technologies products.

Restricted Rights Legend

Use, duplication, or disclosure by the government is subject to restrictions as set forth in subdivision (b)(3)(ii) of the Rights in Technical Data and Computer Software clause at 52.227-7013. Agilent Technologies 3000 Hanover Street; Palo Alto, California 94304.

Trademark Information

Microsoft® and MS-DOS® are U.S. registered trademarks of Microsoft Corporation. IBM® and PC-DOS® are U.S. registered trademarks of International Business Machines Corporation DEC®, VT100®, and VT220® are registered trademarks of Digital Equipment Corporation WYSE® is a registered trademark of Wyse Technology WY-30™ is a trademark of Wyse Technology Macintosh® is a registered trademark of Apple Computer Inc. LabWindows™ is the registered trademark of National Instruments Corporation

Laser Safety Warning

To prevent personal injury, ensure the following information is reviewed before operating transmitter modules.

The Agilent J1422A, J4230A, J4231A and J4232A are classified as Class I (non-hazardous) laser products, which in the USA complies with the United States Food and Drug Administration (FDA) Standard 21 CFR Ch.1 1040.10, and Class 1 Europe complies with EN 60825-1 (1994).

For your protection, review all laser information given in this manual and in the Agilent J430A/31A/32A Transmit Modules User's Manual before installing or using these modules.

To avoid hazardous exposure to laser radiation, it is recommended that you do the following:

ALWAYS DEACTIVATE THE LASER BEFORE CONNECTING OR DISCONNECTING OPTICAL CABLES.

When connecting or disconnecting cables between the module(s) and the device-under-test, observe the connection sequence given below:

Connecting: Connect the optical cable to the device-under-test **before** connecting to the module's optical output connector.

Disconnecting: Disconnect the optical cable from the module's optical output connector **before** disconnecting from the device-undertest. Always ensure the screw cap is fitted properly on to the laser aperture.

NEVER examine or stare into the open end of a broken, severed, or disconnected optical cable when it is connected to the module's optical output connector.

Arrange for service-trained personnel, who are aware of the hazards involved, to repair optical cables.

Use of controls or adjustments or performance procedures other than those specified herein may result in hazardous radiation exposure.

The following labels appears on the front panel of the module and indicate that a laser is fitted and that the radiation is non-hazardous.

CLASS 1 LASER PRODUCT

CLASS 1 LASER PRODUCT translates as follows:

Finnish - LUOKAN 1 LASERLAITE

Finnish/Swedish - KLASS 1 LASER APPARAT

Safety Symbols

The Instruction Documentation Symbol. The product is marked with this symbol when it is necessary for the user to refer to the instructions in the supplied documentation.

WARNING

Warning denotes a hazard. It calls attention to a procedure, which if not correctly performed or adhered to could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

Indicates the field wiring terminal that must be connected to earth ground before operating the equipment - protects against electrical shock in case of fault.

CAUTION

Caution denotes a hazard. It calls attention to a procedure, which if not correctly performed or adhered to could result in damage to or destruction of the instrument. Do not proceed beyond a caution note until the indicated conditions are fully understood and met.

Frame or chassis ground terminal—typically connects to the equipment's metal frame.

Alternating current (AC)

Direct current (DC).

Indicates that a laser is fitted. The user must refer to the manual for specific Warning or Caution information to avoid personal injury or damage to the product.

Indicates hazardous voltages.

General Safety Information

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Agilent Technologies assumes no liability for the customer's failure to comply with these requirements.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gasses or fumes.

DO NOT use repaired fuses or short-circuited fuseholders: For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.

DO NOT perform procedures involving cover or shield removal unless you are qualified to do so: Operating personnel must not remove equipment covers or shields. Procedures involving the removal of covers and shields are for use by service-trained personnel only.

DO NOT service or adjust alone: Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, service personnel must not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure the safety features are maintained.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to an Agilent Technologies Sales and Service Office for service and repair to ensure the safety features are maintained.

Statement of Compliance

Safety Information

These modules have been designed and tested in accordance with publication EN61010-1(1993) / IEC 61010-1(1990) +A1(1992) +A2(1995) / CSA C22.2 No. 1010.1(1993) Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use, and have been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the modules in a safe condition.

The CE mark shows that the product complies with all relevant European legal Directives.

This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.

The CSA mark is a registered trademark of the Canadian Standards Association, and indicates compliance to the standards layed out by them.

The C-Tick mark is a registered trademark of the Australian Communications Authority. This signifies compliance with the Australian EMC Framework Regulations under the terms of the Radiocommunications Act of 1992.

Noise Declaration (German)

LpA<70dB

am Arbeitsplatz (operator position) normaler Betrieb (normal position) nach DIN 45635 pt.19 (per ISO 7779)

Electromagnetic Compatibility (EMC) Information

This product conforms with the protection requirements of European Council Directive 89/336/EEC for Electromagnetic Compatibility (EMC).

The conformity assessment requirements have been met using the technical Construction file route to compliance, using EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

In order to preserve the EMC performance of the product, any cable which becomes worn or damaged must be replaced with the same type and specification.

See the "DECLARATIONS OF CONFORMITY" starting on page 6.

Electrostatic Discharge:

When any electrostatic air discharge is applied to the SpectralBER System according to IEC 61000-4-2:1995, degradation of performance may be observed in the form of occasional errors being counted.

Fuse Information

Fuses on the DWDM Receiver and Transmitter Modules are not user replaceable.

In both DWDM Receiver and Transmitter Modules the fuses are:

Agilent Ref.	Agilent Part No.	Amp	Volt	Туре
F1, F2	2110-0945	3 A	125 V	M*
F3, F4, F500, F501	2110-0946	10 A	125 V	M*
F5	2110-1138	15 A	125 V	M*
F6	2110-0936	4 A	125 V	M*

^{*} M = Medium Time Lag

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM 1310nm Transmitter

Model Number: J4230A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number: 6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

 $The \ product \ herewith \ complies \ with \ the \ requirements \ of \ the \ General \ Product \ Safety \ Directive \ 92/59/EEC.$

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Rea_

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM 1550nm Transmitter

Model Number: J4231A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number: 6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

The product herewith complies with the requirements of the General Product Safety Directive 92/59/EEC.

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Pea_

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM Transmitter

Model Number: J4232A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number: 6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

 $The \ product \ herewith \ complies \ with \ the \ requirements \ of \ the \ General \ Product \ Safety \ Directive \ 92/59/EEC.$

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Rea_

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM 1310nm Transmitter

Model Number: J4233A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number: 6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

The product herewith complies with the requirements of the General Product Safety Directive 92/59/EEC.

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Pea_

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM 1550nm Transmitter

Model Number: J4234A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number:6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

 $The \ product \ herewith \ complies \ with \ the \ requirements \ of \ the \ General \ Product \ Safety \ Directive \ 92/59/EEC.$

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Rea_

According to ISO/IEC Guide 22 and CEN/CENELEC EN45014

Manufacturer's Name: Agilent Technologies UK Ltd.

Manufacturer's Address: Telecomms Networks Test Division

South Queensferry West Lothian, EH30 9TG Scotland, United Kingdom

Declares that the product

Product Name: SpectralBER DWDM Transmitter

Model Number: J4235A

Product Options: This declaration covers all options of the above product as detailed in

TCF A-5951-9852-01.

EMC:

Conforms with the protection requirements of European Council Directive 89/336/EEC on the approximation of the laws of the member states relating to electromagnetic compatibility, against EMC test specifications EN 55011:1991 (Group 1, Class A) and EN 50082-1:1992.

As Detailed in: Electromagnetic Compatibility (EMC)

Technical Construction File (TCF) No. A-5951-9852-01

Assessed by: DTI Appointed Competent Body

EMC Test Centre,

GEC-Marconi Avionics Ltd.,

Maxwell Building,

Donibristle Industrial Park,

Hillend, Dunfermline KY11 9LB

Scotland, United Kingdom

Technical Report Number: 6893/2200/CBR, dated 21 August 1997

Safety:

The product conforms to the following safety standards:

IEC 61010-1(1990) +A1(1992) +A2(1995) / EN 61010-1:1993

IEC 60825-1(1993) / EN 60825-1:1994

USA / CFR Ch.1 1040.10

The product herewith complies with the requirements of the General Product Safety Directive 92/59/EEC.

South Queensferry, Scotland. 01 May 2000

W.R. Pearson / Quality Manager

WR Pea_

Contents

Legal and Safety Information	2
Agilent Technologies Warranty Statement	2
Responsibilities of the Customer	2
Certification	2
Assistance	2
Restricted Rights Legend	3
Trademark Information	3
Laser Safety Warning	3
Safety Symbols	4
General Safety Information	4
Statement of Compliance	5
Safety Information	5
Noise Declaration (German)	5
Electromagnetic Compatibility (EMC) Information	5
Fuse Information	
Chapter 1	
Module Overview	17
Description	17
Optical Wavelength	17
Signal Structure	17
Framed	17
Unframed	17
Error Add	17
Front Panel Features	18
Optical Out Ports	18
Ref Clock Out Port	18
LEDs	18
Module Identification	19
Safety Precautions for the Operator	19
Additional Safety Precautions for Service Engineers	19
ESD Precautions	20
Operators Maintenance	20
Cleaning	20
Cabinet Cleaning	20
Optical Connector Cleaning	21
Storage and Shipment	22
Repackaging for Shipment	22
Original Packaging	22
Other Packaging	22
Module Weight	22
Dimensions	22

Chapter 2	
Installation	
Initial Inspection	
Operating Environment	
Cooling Requirements	24
Power Requirements	24
J4230A, J4231A	
J4233A, J4234A, J4235A	
Preparation for Use	
Power Requirements	
Connecting to a Network	
Optical Interface Adapters	
SMA Adapters	
Installing and Removing Modules	20
Addressing	2
Module Slot Location	28
Verify Module Installation	28
	30
Chapter 3 Module Control Introduction	
Chapter 4 Verification Tests	
Introduction	
Recommended Test Equipment	
Calibration Cycle Performance Test Record	
Transmitter Clock Test	
Specifications	
Description Equipment Required	
Procedure	
Transmitter Optical Power and Wavelength Test	
Specifications	
Description	
Equipment Required	
Procedure	
J4230A, J4233A Transmitter Modules	
J4231A, J4234A Transmitter Modules	
J4232A, J4235A Transmitter Modules	
Verification Test Record	
Chapter 5	
Performance Tests	
Introduction	
Recommended Test Equipment	4

Calibration Cycle	46
Performance Test Record	46
Transmitter Clock Test	47
Specifications	47
Description	47
Equipment Required	47
Procedure	47
Transmitter Optical Power and Wavelength Test	48
Specifications	
Description	49
Equipment Required	50
Procedure	50
J4230A, J4233A Transmitter Modules	
J4231A, J4234A Transmitter Modules	51
J4232A, J4235A Transmitter Modules	53
Performance Test Record	55
Index	57

Chapter 1 Module Overview

This manual provides you with information about the following Dense Wave Division Multiplexing (DWDM) Transmitter modules:

- Agilent J4230A Transmitter
- Agilent J4231A Transmitter
- Agilent J4232A Transmitter
- Agilent J4233A Transmitter
- Agilent J4234A Transmitter
- Agilent J4235A Transmitter

Description

The modules are register-based C-size double slot VXI modules.

Optical Wavelength

Each module has four optical output ports with the following wavelengths:

- 1310 nm for all Agilent J4230A and J4233A optical ports.
- 1550 nm for all Agilent J4231A and J4234A optical ports.
- ITU-T 1550 nm for the Agilent J4232A and J4235A optical ports. These modules can provide a different wavelength for each optical port. (The wavelengths conform to the ITU standard and have 50 GHz spacing.)

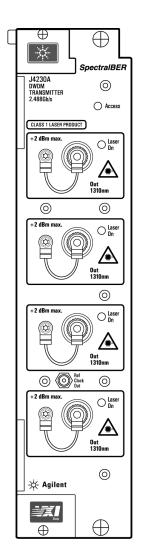
Signal Structure

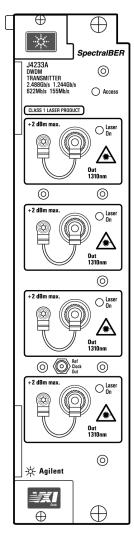
Each port can transmit different signal structures as follows:

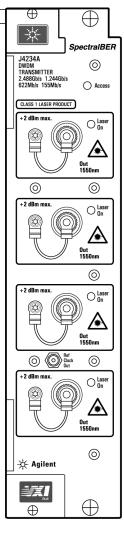
Framed

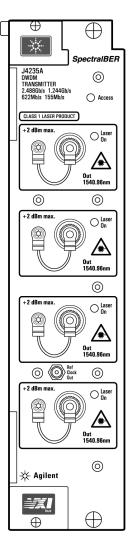
Modules	SDH	Payload	SONET	Payload
All	STM-16c	VC-4-16c	OC-48c	OC-48c SPE
14000 A /0 4 A /0 5 A	STM-4c	VC-4-4c	OC-12c	OC-12c SPE
J4233A/34A/35A	STM-1	VC-4	OC-3c	OC-3c SPE

Unframed


PRBS patterns at 2.488320 Gb/s (All modules), 1.244160 Gb/s (J4233A/34A/35A only), 622.08 Mb/s (J4233A/34A/35A only) and 155.52 Mb/s (J4233A/34A/35A only) as follows:


- PRBS 2²³-1 (inverted)
- PRBS 2¹⁵-1 (inverted)
- PRBS 2¹¹-1
- PRBS 29-1


Error Add B1, B2 or bit errors, either single or at 1×10^{-7} , 1×10^{-8} or 1×10^{-9} .


Chapter 1 Module Overview 17

Front Panel Features

J4230A

J4233A

J4234A

J4235A

Optical Out Ports

The modules each have four optical ports, the wavelengths and maximum optical power for each port is listed below:

- 1310 nm, +2 dBm for the J4230A and J4233A
- 1550 nm, +2 dBm for the J4231A and J4234A (+4 dBm for Option 001)
- ITU-T 1550 nm, +2 dBm for J4233A and J4235A

Ref Clock Out Port

The modules provides a 78 MH/z external clock output.

LEDs Access

This LED lights when the module is being accessed over the

VXIbus backplane.

Laser On Thi

This yellow LED lights when the optical output is enabled.

18 Module Overview Chapter 1

Module Identification

An identification label is attached to the module clamshell enclosure. The serial number on the label has a two letter reference denoting country of origin (GB = Great Britain) and an eight digit serial number. The serial number is unique to each module and should be quoted in all correspondence with Agilent Technologies, especially when ordering replacement parts.

Safety Precautions for the Operator

The following general safety precautions must be observed during all phases of operation, service, and repair of this module. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the module. Agilent Technologies Company assumes no liability for the customer's failure to comply with these requirements.

In particular, the operator should note the following safety information:

- "Laser Safety Warning" on page 3
- "Safety Symbols" on page 4
- "ESD Precautions" on page 20
- "Operators Maintenance" on page 20

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been impaired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until safe operation can be verified by service-trained personnel. If necessary, return the product to a Agilent Technologies Sales and Service Office for service and repair to ensure the safety features are maintained.

Additional Safety Precautions for Service Engineers

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modifications to the module. Return the module to a Agilent Technologies Sales and Service Office for service and repair to ensure the safety features are maintained.

DO NOT service or adjust alone: Under certain conditions, dangerous voltages may exist even with the equipment switched off. To avoid dangerous electrical shock, service trained personnel must not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

Chapter 1 Module Overview 19

ESD Precautions

Caution

The module contains components sensitive to electrostatic discharge. To prevent component damage, carefully follow the handling precautions presented below.

The smallest static voltage most people can feel is about 3500 volts. It takes less than one tenth of that (about 300 volts) to destroy or severely damage static sensitive circuits. Often, static damage does not immediately cause a malfunction but significantly reduces the component's life. Adhering to the following precautions will reduce the risk of static discharge damage.

- Keep the module in its conductive storage box when not installed in the VXI Mainframe. Save the box for future storage of the module.
- Before handling the module, select a work area where potential static sources are minimized. Avoid working in carpeted areas and non-conductive chairs. Keep body movement to a minimum. Agilent Technologies recommends that you use a controlled static workstation.
- Handle the module by its front panel. Avoid touching any components or edge connectors. When you install the module, keep one hand in contact with the protective bag as you pick up the module with your other hand. Then, before installing the module, make contact with the metal surface of the VXI Mainframe with your free hand to bring you, the module and the VXI Mainframe to the same static potential. This also applies whenever you connect/disconnect cables on the front panel.

Operators Maintenance

WARNING

NO OPERATOR SERVICEABLE PARTS INSIDE. REFER SERVICING TO QUALIFIED PERSONNEL. TO PREVENT ELECTRICAL SHOCK DO NOT REMOVE COVERS.

Maintenance appropriate for the operator is:

- Cabinet cleaning
- Optical Connector Cleaning

Cleaning

Cabinet Cleaning

Clean the cabinet using a damp cloth only.

20 Module Overview Chapter 1

Optical Connector Cleaning

It is recommended that the optical connectors be cleaned at regular intervals using the following materials:

Description	Part Number
Blow Brush	9300-1131
Isopropyl Alcohol	8500-5344
Lens Cleaning Paper	9300-0761
Adhesive Tape Kit	15475-68701

Caution

Do not insert any tool or object into the IN or OUT ports of the module as damage to or contamination of the optical fibre may result.

- 1. Switch off the VXI Mainframe, then remove the power cord from the ac mains power socket.
- 2. Remove the adapters from the **Out** ports.
- 3. Using the blow brush with the brush removed blow through the ferrule of the standard flexible connector and the adapter.

Caution

If the optical fibre of the fixed connector requires further cleaning this entails disassembly of the module which should only be carried out by suitably trained service personnel.

- 4. Apply some isopropyl alcohol to a piece of the cleaning paper and clean the barrel of the adapter. Using a new piece of cleaning paper, clean the face of the adapter. Repeat this operation, using a new piece of cleaning paper each time.
- 5. Lightly press the adhesive side of the tape provided against the front of the adapter, then remove it quickly repeat twice. This removes any particles of cleaning paper which may be present.
- 6. Replace the adapters on the flexible connector.

Chapter 1 Module Overview 21

Storage and Shipment

The module may be stored or shipped in environments within the following limits:

Temperature: -10° C to $+70^{\circ}$ C

Altitude: Up to 15,200 meters (50,000 feet)

Humidity: Up to 95% relative humidity to 40 °C.

The module should also be protected from temperature extremes which could cause condensation within the module.

Repackaging for Shipment

Original Packaging

Containers and materials identical to those used in factory packaging are available from Agilent Technologies offices. If the module is being returned to Agilent Technologies for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the module by model number and full serial number.

Other Packaging

The following general instructions should be followed when repackaging with commercially available materials:

- Wrap module in heavy paper or plastic. If the module is being shipped to Agilent Technologies, attach a tag indicating the type of service required, return address, model number and full serial number.
- Use a strong shipping container. A double wall carton made of 350-pound test material is adequate.
- Use a layer of shock absorbing material 70 to 100 mm (3 to 4 inch) thick, around all sides of the module to provide firm cushioning and prevent movement inside the container. Protect the Front Panel controls and Rear Panel connectors with cardboard.
- Seal shipping container securely.
- Mark shipping container FRAGILE to ensure careful handling.
- In any correspondence, refer to module by model number and full serial number.

Module Weight 3.1 kg (6.8 lb)

Dimensions 261 mm (10.3 in) high, 60 mm (2.36 in) wide, 360 mm (14 in) deep

22 Module Overview Chapter 1

Chapter 2 Installation

Initial Inspection

WARNING

TO AVOID HAZARDOUS ELECTRICAL SHOCK, DO NOT PERFORM ELECTRICAL TESTS WHEN THERE ARE SIGNS OF SHIPPING DAMAGE TO ANY PORTION OF THE OUTER ENCLOSURE (COVERS, PANELS, METERS).

Inspect the shipping container for damage. If the shipping container or cushioning material is damaged, it should be kept until the contents of the shipment have been checked for completeness and the module has been checked both mechanically and electrically. Procedures for checking electrical operation are given in Chapter 4. If the contents of the shipment are incomplete, if there is mechanical damage or defect, notify the nearest Agilent Technologies office. If the module does not pass the electrical performance tests given in Chapter 4, notify the nearest Agilent Technologies office. If the shipping container is also damaged, or the cushioning material shows signs of stress, notify the carrier as well as the nearest Agilent Technologies office. Keep the shipping materials for the carrier's inspection. The Agilent Technologies office will arrange for repair or replacement without waiting for claim settlement.

Operating Environment

This module is designed for indoor use only. **DO NOT** operate the product in an explosive atmosphere or in the presence of flammable gasses or fumes.

This module may be operated in environments within the following limits:

Temperature: 0° C to $+40^{\circ}$ C.

Altitude: up to 3050m (10,000ft).

Humidity: up to 95% relative humidity to 40 °C.

The modules should be protected from temperature extremes which may cause condensation.

Caution

The modules are designed for use in Installation Category II and Pollution Degree 2 per IEC 1010 and 644 respectively.

When installing the modules in a cabinet, the convection into and out of the module must not be restricted.

Chapter 2 Installation 23

Cooling Requirements

The transmitter modules are cooled by air drawn through the back of the E8404A VXI Mainframe and exhausted from the side. Each module occupies 2 slots, has an airflow of 6 litres/sec/slot, and a back pressure of 0.2 mm H2O (at a temperature rise of 10 degrees C).

The E1406A Slot 0 controller and the DWDM controller each occupy 1 slot each. At a temperature rise of 10 degrees C, the Slot 0 controller has an airlow of 1.5 litres/sec with a back pressure of 0.3 mm H2O. The DWDM controller's airflow is 0.4 litres/sec with a back pressure of 0.1 mm H2O.

Power Requirements

The modules are powered by dc voltages provided from the backplane of the VXI Mainframe that houses the modules during normal operation. Power consumption of each module is 106 W.

The maximum current drawn from VXIbus dc voltage rails is as follows:

J4230A, J4231A

dc volts	dc Current	Dynamic Current
+24 V	1.0 A	420 mA
+12 V	0.85 A	63 mA
+5 V	9.4 A	1.1 A
-2 V	2.1 A	500 mA
-5.2 V	2.8 A	270 mA
-12 V	1.5 A	71 mA
-24 V		

J4233A, J4234A, J4235A

dc volts	dc Current	Dynamic Current
+24 V	1.2 A	930 mA
+12 V	860 mA	100 mA
+5 V	9.2 A	1.63 A
-2 V	2.1 A	50 mA
-5.2 V	2.6 A	290 mA
-12 V	1.5 A	60 mA
-24 V		

24 Installation Chapter 2

Preparation for Use

Caution

Receiver module optical input ports can be damaged if they are connected directly to the optical output ports of either Agilent J4231A Option 001 or Agilent J4234A Option 001.

Caution

If a module is not used as specified, the protection provided by the equipment could be impaired. The module must be used in a normal condition only (in which all means of protection are intact).

Power Requirements

The modules are powered by dc voltages provided from the backplane of the VXI Mainframe that houses the modules during normal operation. Power consumption of each module is 106 W.

Connecting to a Network

Caution

Before connecting or disconnecting, ensure that you are grounded, or make contact with the metal surface of the VXI Mainframe with your free hand to bring you, the module, and the mainframe to the same static potential. Modules remain susceptible to ESD damage while the module is installed in the VXI Mainframe. Additional ESD information is required when servicing see "ESD Precautions" on page 20.

Optical Interface Adapters

FC/PC optical interface adapters are supplied with the module. Alternative optical interface adapters that can be used with this module are listed below:

Interface Type	Part Number
Biconic	81000WI
D4	81000GI
Diamond HMS-10/HP	81000AI
DIN 47256	81000SI
sc	81000KI
SMA	81000JI
ST	81000VI

SMA Adapters

These adapters (1250-1462) are available and can be screwed on to the Ref Clock Out port to protect the threads of the connector.

Chapter 2 Installation 25

Installing and Removing Modules

Caution

Review the "ESD Precautions" on page 20 before installing or removing modules and switch the Mainframe OFF to prevent irreparable damage to the module or to the VXI Mainframe.

Note

Set the address switches as appropriate before installing modules. Refer to the following paragraphs.

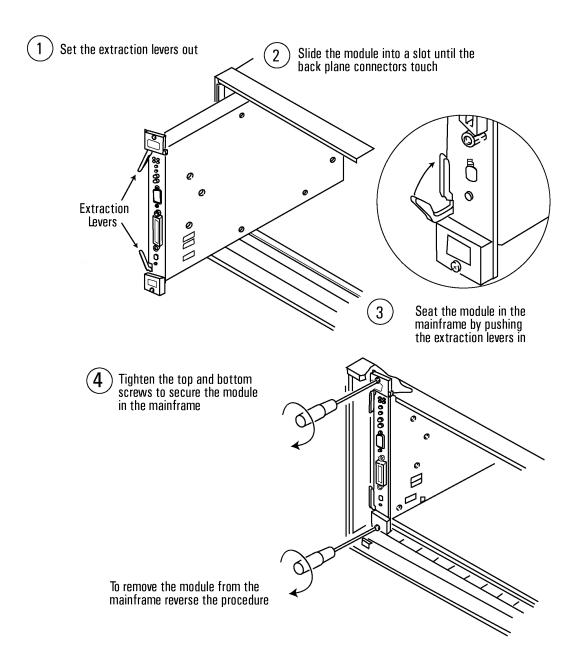
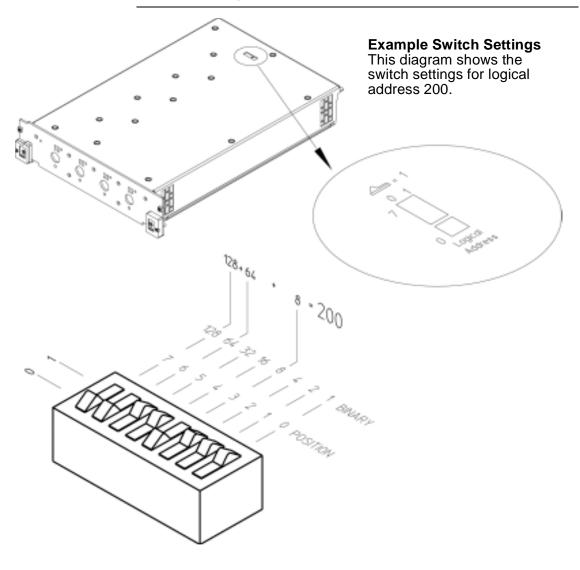


Figure 2-1. Installing and Removing a Module

26 Installation Chapter 2

Addressing

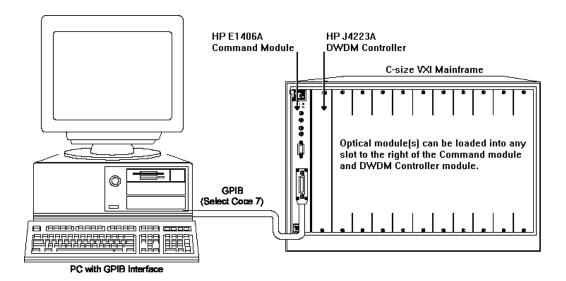
Transmitter modules are servants to the J4223A DWDM Controller (commander module). The logical address of each transmitter module must be within the servant area of the DWDM Controller.


Caution

Before assigning a logical address to a transmitter module, check the logical address and servant area switch settings of the DWDM Controller module, for details see the *Installation & System Reference Manual*.

You assign a logical address to a transmitter module by setting a series of switches which you access through a slot in the module's clamshell enclosure, see the diagram below. The switches are binary weighted, the weightings θ (LSB) to 7 (MSB) are marked on the clamshell enclosure.

Note


The value you select must not conflict with the logical address of any other module(s) serving the DWDM Controller module.

Chapter 2 Installation 27

Module Slot Location

It is recommended that modules be loaded as shown below. Refer to the *Installation & System Reference Manual* for more system installation information.

Note

It is not necessary to install the modules in the VXI rack in order of ascending logical address, however if you do install them this way the SCPI supersystem commands used to control a module will reflect the physical position of the module in the VXI Mainframe.

Verify Module Installation

You can verify module installation using the soft front panel. (Soft front panel software installation information will be found in the *Installation & System Reference Manual.*)

Starting the Soft Front Panel

Windows

95/98/2000/NT In the directory

 $C:\Vxipnp\winNT(win95)\MultirateSpectralBER$ double click on the file *multirate.exe*, or double click on

the application icon.

Solaris Execute the command *multirate.exe*.

28 Installation Chapter 2

1. From the menu bar, select **Instrument** → **Detect**... to display the Instrument Detect window shown in Figure 2-2.:

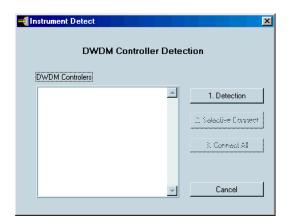


Figure 2-2. Instrument Detect Window

2. Click on the **1. Detection** button to detect all configured instruments connected to the external controller as shown in Figure 2-3. (In this case one DWDM Controller, GPIB0::25::INSTR.)

Note

This means that VISA has detected one VXI board 0 (zero) with a logical address of 25.

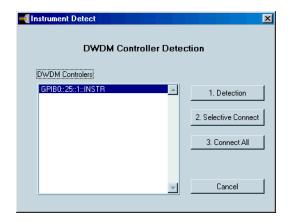


Figure 2-3. Instrument Found

- 3. Either select one of the VXI Mainframes (if more than one is detected) and click on 2. Selective Connect, or click on
 - **3. Connect All** to start the Soft Front Panel.

Chapter 2 Installation 29

Verify the Installation

Figure 2-4 shows a Typical Soft Front Panel.

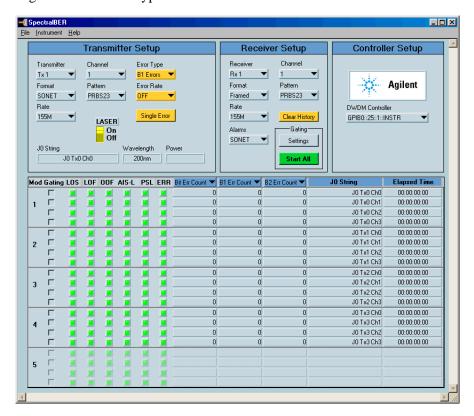


Figure 2-4. A Typical Soft Front Panel

A display similar to the one in Figure 2-4 verifies the installation. The fact that the Transmitter, Receiver and DWDM Controller Setup areas are live (not greyed out) shows that the modules are installed correctly.

A further check of the installation if required, which will also give the location and logical addresses of the various parts of the system, follows.

- Connect an RS232 Cable between the controlling computer and the Command Module. (There is an RS232 Cable supplied with the Command Module.)
- 2. From the Windows Start Menu, select **Programs**→**Accessories**→**Communications**→**Hyper Terminal**.
- 3. Cycle the power on the VXI Mainframe. The Command Module Resource Manager will output to the hyperterminal, a summary similar to the one below. The summary identifies the Command Module logical address and servant area, the logical addresses and locations of each module in the mainframe and the Commander / Servant hierarchy.

30 Installation Chapter 2

Testing ROM
Testing 512K Bytes RAM
Passed
Testing CPU

CPU Self Test Passed

HPIB Address: 09

Talk/Listen

Command Module ladd = 0

Command Module servant area = 255
Command Module VME bus timeout -- ENABLED

Searching for static devices in mainframe 0

SC device at ladd 0 in slot 0

SC device at ladd 8 in slot 1

SC device at ladd 9 in slot 3

SC device at ladd 10 in slot 5

Searching for dynamic devices in mainframe 0 Searching for pseudo devices

Configuring Commander / Servant hierarchy

ladd = 0, cmdr ladd = -1

ladd = 8, cmdr ladd = 0

ladd = 9, cmdr ladd =

ladd = 10, cmdr ladd = 8

Chapter 2 Installation 31

32 Installation Chapter 2

Chapter 3 **Module Control**

Introduction

The DWDM Transmitter modules can be controlled from a PC or workstation using SCPI commands, Universal Instrument Drivers (UIDs) or manually using the Soft Front Panel. This chapter describes the transmitter part of the Soft Front Panel.

If you want to control modules using the Soft Front Panel, you will need to install the appropriate soft front panel software. For more information about installing SpectralBER software, controlling modules manually or using UIDs, see the *Installation & System Reference Manual*.

For more information on SCPI commands, see the *SpectralBER System* (2.5 Gb/s and below) Remote Control Manual.

Chapter 3 Module Control 33

34 Module Control Chapter 3

Chapter 4 Verification Tests

Introduction

This chapter contains information to verify the J4230A/31A/32A/33A/34A/35A DWDM Transmitter modules at 2.488 Gb/s only. The Verification Tests are designed to be used when no soft front panel control is available or to verify that a module has limited functional operation. If the Verification Tests indicate that a module is out of specification, or if full warranted specification testing is required, refer to Chapter 5 "Performance Tests" on page 45.

Note

The warranted specifications are supplied as part of the documentation package provided with the system.

Recommended Test Equipment

Table 4-1 lists the equipment required for Verification testing of the system. Alternative equipment that meets or exceeds the critical specification of the listed equipment may be substituted. Recommended models are those typically used in Agilent Service Centers.

Table 4-1. Recommend Test Equipment

Instrument	Critical Specification		Recommended Model
Frequency Counter	Range:	0 to 200 MHz	5335A Option 010
Lightwave Multimeter	800 nm to 1700 nm		8153A
Power Meter Sensor Module	800 nm to 1700 nm	+3 dBm to -70 dBm	81536A
Multi Wavelength Meter	Wavelength accuracy:	3 ppm (0.005 nm at 1550 nm)	86120B
Optical Attenuator	Wavelength: Range: Insertion Loss	1200 to 1600 nm 0 to 30 dB 4 dB	8156A
FC/PC Optical Interface Connector	Unique		81000FI (x 4)
Optical Cable	Unique		11871A (x 2)
Cable	SMA to SMA	0.5 meter	E1675-64210
Adapter	SMA (female) to BNC (male)		1250-2015

Chapter 4 Verification Tests 35

Calibration Cycle The Verification Tests can be checked at any time.

Performance Test Record

The results of the 2.488 Gb/s Verification Tests can be recorded on the "Verification Test Record" on page 44. These results can be used to verify that a module is operational or if further performance testing is required.

36 Verification Tests Chapter 4

Transmitter Clock Test

Specifications

Table 4-2. Transmitter Clock Specifications (All Modules)

Internal Frequency:	2.48832 GHz ±3.5 ppm
Measured Frequency:	77.76 MHz ±3.5 ppm (±272.26 Hz)
Aging:	±1 ppm/year (±77.76 Hz)
Level:	unbalanced TTL (J4230A/31A/32A)
	ac coupled, nominal ECL (J4233A/34A/35A)

Description

This test verifies that the 2.4 GHz internal Clock is within its specified limits, by measuring a divided-down version of the clock at the **Ref Clock Out** port. The **Ref Clock Out** port has a SMA-type connector that outputs an unbalanced clock signal. The limits take in to account the accuracy, stability and ageing of the clock and assume that the module is within its calibration cycle.

Equipment Required

Frequency Counter: 5335A Option 010

Cable, SMA to SMA (0.5 meter): E1675-64210
Adapter, SMA (female) to BNC (male): 1250-2015

Procedure

- 1. Connect the **Ref Clock Out** port to the Frequency Counter.
- 2. Check that the measured clock frequency is 77,760000 MHz ±3.5 ppm. (Equivalent to an internal clock frequency of 2.48832 GHz ±11.2 kHz.)
- 3. Disconnect the Frequency Counter.

Chapter 4 Verification Tests 37

Transmitter Optical Power and Wavelength Test

Specifications

Table 4-3. J4230A, J4233A Optical Power and Wavelength Specifications

Wavelength:	1310 nm ±20 nm	
Power Output:	Maximum: +2 dBm Minimum: -1 dBm Typical: +1 dBm	
Safety Class:	Class 1	

Table 4-4. J4231A, J4234A Optical Power and Wavelength Specifications

Wavelength:	1550 nm ±5 nm
Power Output: Std.	Maximum: +2 dBm Minimum: -1 dBm Typical: +1 dBm
Option 001	Maximum: +4 dBm Minimum: +1 dBm Typical: +3 dBm
Safety Class:	Class 1

38 Verification Tests Chapter 4

Table 4-5. J4232A, J4235A
Optical Power and Wavelength Specifications

	-			
Option:	Wavelength:	Option:	Wavelength:	
001	1536.61 nm ±0.07 nm	031	1548.51 nm ±0.07 nm	
002	1537.01 nm ±0.07 nm	032	1548.91 nm ±0.07 nm	
003	1537.40 nm ±0.07 nm	033	1549.32 nm ±0.07 nm	
004	1537.90 nm ±0.07 nm	034	1549.72 nm ±0.07 nm	
005	1538.19 nm ±0.07 nm	035	1550.12 nm ±0.07 nm	
006	1538.59 nm ±0.07 nm	036	1550.52 nm ±0.07 nm	
007	1538.98 nm ±0.07 nm	037	1550.92 nm ±0.07 nm	
800	1539.38 nm ±0.07 nm	038	1551.32 nm ±0.07 nm	
009	1539.77 nm ±0.07 nm	039	1551.72 nm ±0.07 nm	
010	1540.17 nm ±0.07 nm	040	1552.12 nm ±0.07 nm	
011	1540.56 nm ±0.07 nm	041	1552.52 nm ±0.07 nm	
012	1540.96 nm ±0.07 nm	042	1552.92 nm ±0.07 nm	
013	1541.35 nm ±0.07 nm	043	1553.33 nm ±0.07 nm	
014	1541.75 nm ±0.07 nm	044	1553.73 nm ±0.07 nm	
015	1542.14 nm ±0.07 nm	045	1554.13 nm ±0.07 nm	
016	1542.54 nm ±0.07 nm	046	1554.53 nm ±0.07 nm	
017	1542.94 nm ±0.07 nm	047	1554.94 nm ±0.07 nm	
018	1543.33 nm ±0.07 nm	048	1555.34 nm ±0.07 nm	
019	1543.73 nm ±0.07 nm	049	1555.75 nm ±0.07 nm	
020	1544.12 nm ±0.07 nm	050	1556.15 nm ±0.07 nm	
021	1544.53 nm ±0.07 nm	051	1556.55 nm ±0.07 nm	
022	1544.91 nm ±0.07 nm	052	1556.95 nm ±0.07 nm	
023	1545.32 nm ±0.07 nm	053	1557.36 nm ±0.07 nm	
024	1545.72 nm ±0.07 nm	054	1557.76 nm ±0.07 nm	
025	1546.12 nm ±0.07 nm	055	1558.17 nm ±0.07 nm	
026	1546.52 nm ±0.07 nm	056	1558.57 nm ±0.07 nm	
027	1546.92 nm ±0.07 nm	057	1558.98 nm ±0.07 nm	
028	1547.32 nm ±0.07 nm	058	1559.39 nm ±0.07 nm	
029	1547.72 nm ±0.07 nm	059	1559.79 nm ±0.07 nm	
030	1548.12 nm ±0.07 nm	060	1560.20 nm ±0.07 nm	
		061	1560.61 nm ±0.07 nm	
Power Ou	Power Output:			
	Maximum	: +2 dBm		
	Minimum:			
	Typical: +1 dBm			
Safety Cla	Safety Class: Class 1			

Description

This test verifies the Optical Output Power and Wavelength at each of the Transmitter optical ${\bf Out}$ ports.

Chapter 4 Verification Tests 39

Equipment Required

Lightwave Multimeter 8153A

Power Meter Sensor Module: 81536A

Optical Attenuator 8156A

Multi-wavelength Meter 81620B

Optical Cables: 11871A (x 2)

FC/PC Optical Connectors: 81000FI (x 2)

Procedure

J4230A, J4233A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- Switch on the VXI mainframe and check that all the Transmitter Module Laser On LEDs are ON (indicating that the lasers are enabled)
- 2. Connect the Transmitter module, **Channel 1** optical **Out** port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 3. Set up the 8153A as follows:
 - a. Press **PARAM** key to display wavelength $[\lambda]$
 - b. Using (\clubsuit) and (\clubsuit) keys, set the wavelength to 1310 nm.
 - c. Press **PARAM** key to display Time [t]
 - d. Using (\clubsuit) and (\clubsuit) keys, set the time to 20 ms.
 - e. Press PARAM key to display REF.
 - f. Using (\clubsuit) , (\clubsuit) and (\clubsuit) keys, set the REF to 0.00 dBm.
 - g. Press PARAM key to display CAL.
 - h. Using (-), \rightarrow and (-) keys, set the CAL to 0.000 dBm.
 - i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 4. Press **MODE** to select the Power Level measurement on the 8153A.
- 5. Check that the optical power reading is between -1 dBm and +2 dBm.
- 6. Disconnect the optical cable from the 8153A and connect it to the 81620B.

40 Verification Tests Chapter 4

- 7. Press **PRESET** on the 81620B.
- 8. Check that the wavelength is 1310 nm ± 20 nm.
- 9. Repeat steps 2 to 8 for Channel 2, 3 and 4 optical Out ports.

J4231A, J4234A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- Switch on the VXI mainframe and check that all the Transmitter Module Laser On LEDs are ON (indicating that the lasers are enabled).
- 2. Connect the Transmitter module **Channel 1** optical **Out** port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 3. Set up the 8153A as follows:
 - a. Press **PARAM** key to display wavelength $[\lambda]$
 - b. Using (\clubsuit) (\clubsuit) and (\clubsuit) keys, set the wavelength to 1550 nm.
 - c. Press PARAM key to display Time [t]
 - d. Using (-) and (-) keys, set the time to 20 ms.
 - e. Press PARAM key to display REF.
 - f. Using (\clubsuit) , (\clubsuit) and (\clubsuit) keys, set the REF to 0.00 dBm.
 - g. Press PARAM key to display CAL.
 - h. Using \bigcirc and \bigcirc keys, set the CAL to 0.000 dBm.
 - i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 4. Press **MODE** to select the Power Level measurement on the 8153A.
- 5. Check that the optical power reading is between −1 dBm and +2 dBm. For Option 001 modules, check that the optical power reading is between +1 dBm and +4 dBm.

Note

The 8153A measures +3 dBm maximum input optical power. For Option 001 modules with optical output power > +3 dBm, the Power Meter reading will go out of range. Insert the 8156A Optical attenuator between the optical Out port and the 8153A. This will add a 4 dB insertion loss into the optical signal path. Check that the optical power reading is now between -3 dBm and 0 dBm. (Equivalent to optical power in the range +1 dBm to +4 dBm, through an insertion loss of 4 dB.)

Chapter 4 Verification Tests 41

- 6. Disconnect the optical cable from the 8153A and connect it to the 81620B.
- 7. Press [PRESET] on the 81620B.
- 8. Check that the wavelength is 1550 nm ± 5 nm.
- 9. Repeat steps 2 to 8 for Channel 2, 3 and 4 optical Out ports.

J4232A, J4235A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- 1. Switch on the VXI mainframe and check that all the Transmitter Module **Laser On** LEDs are ON (indicating that the lasers are enabled).
- Connect the Transmitter module Channel 1 optical Out port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 3. Set up the 8153A as follows:
 - a. Press PARAM key to display wavelength $[\lambda]$
 - b. Using (and keys, set the wavelength to the wavelength shown on the **Out** port of the module.
 - c. Press **PARAM** key to display Time [t]
 - d. Using ♠,♠ ↑ and ↓ keys, set the time to 20 ms.
 - e. Press PARAM key to display REF.
 - f. Using (-), and (-) keys, set the REF to 0.00 dBm.
 - g. Press PARAM key to display CAL.
 - h. Using (\clubsuit) , (\clubsuit) and (\clubsuit) keys, set the CAL to 0.000 dBm.
 - i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 4. Press **MODE** to select the Power Level measurement on the 8153A.
- 5. Check that the optical power reading is between -1 dBm and +2 dBm.
- 6. Disconnect the optical cable from the 8153A and connect it to the 81620B.
- 7. Press **PRESET** on the 81620B.

42 Verification Tests Chapter 4

8. Check that the wavelength is within the limits shown in the specifications in Table 4-5, "J4232A, J4235A Optical Power and Wavelength Specifications", on page 39.

9. Repeat steps 2 to 8 for Channel 2, 3 and 4 optical Out ports.

Chapter 4 Verification Tests 43

Verification Test Record

J4230A, J4231A, J4232A, J4233A, J4234A, J4235A SpectralBER DWDM Transmitter Modules

Location: Serial No.:

Tested by:

Temperature: Certified by:

Humidity: Date:

	Page Test Description			Result	
Page			Min.	Actual	Max.
	Transmitte	er Clock Test			
	Step 2	77,760,000 MHz	77,759,650 MHz		77,760,350 MHz
	Transmitte J4230A, J	er Optical Power & W 4233A	avelength Test		
	Step 1	Laser LEDs		On/Off	
	Step 5	>-1 dBm <+2 dBm	-1 dBm		+2 dBm
	Step 8	1310 nm	1290 nm		1330 nm
	Step 9	Repeat 2 to 8		Pass/Fail	
	Transmitte J4231A, J	er Optical Power & W 4234A	avelength Test		
	Step 1	Laser LEDs		On/Off	
	Step 5	Standard: >-1 dBm <+2 dBm Option 001: =1 dBm to +4 dBm	-1 dBm +1 dBm		+2 dBm +4 dBm
	Step 8	1550 nm	1545 nm		1555 nm
	Step 9	Repeat 2 to 8		Pass/Fail	
	Transmitter Optical Power & Wavelength Test J4232A, J4235A				
	Step 1	Laser LEDs		On/Off	
	Step 5	>-1 dBm <+2 dBm	-1 dBm		+2 dBm
	Step 8	See Table 4-5. on page 39		Pass/Fail	
	Step 9	Repeat 2 to 8		Pass/Fail	

44 Verification Tests Chapter 4

Performance Tests

Introduction

This chapter contains information to enable you to performance test the warranted specifications of the J4230A/31A/32A/33A/34A/35A DWDM Transmitter modules in the J4221A and J4222A DWDM SpectralBER system. The Performance Tests apply to all data rates generated by the Transmitter modules and are controlled manually using a PC or Workstation soft front panel. If no soft front panel is available, or if only a basic operational check is required, refer to Chapter 4 "Verification Tests" on page 35.

Note

The warranted specifications are supplied as part of the documentation package provided with the system.

Recommended Test Equipment

Table 5-1 lists the equipment required for performance testing of the system. Alternative equipment that meets or exceeds the critical specification of the listed equipment may be substituted. Recommended models are those typically used in Agilent Service Centers.

Table 5-1. Recommend Test Equipment

Instrument	Critical Specification		Recommended Model
Frequency Counter	Range:	0 to 200 MHz	5335A Option 010
Lightwave Multimeter	800 nm to 1700 nm		8153A
Power Meter Sensor Module	800 nm to 1700 nm	+3 dBm to -70 dBm	81536A
Multi Wavelength Meter	Wavelength accuracy:	3 ppm (0.005 nm at 1550 nm)	86120B
Optical Attenuator	Wavelength: Range: Insertion Loss	1200 -1600 nm 0 to 30 dB 4 dB	8156A
FC/PC Optical Interface Connector	Unique		81000FI (x 4)
Optical Cable	Unique		11871A (x 2)
Cable	SMA to SMA	0.5 meter	E1675-64210
Adapter	SMA (female) to	BNC (male)	1250-2015

Calibration Cycle

Depending on the use and environmental conditions, the performance of the modules should be checked once a year, by using the following performance tests.

Performance Test Record

The results of the performance tests can be recorded on the "Performance Test Record" on page 55. The performance test record lists all the tested specifications and the acceptable limits. The results recorded at incoming inspection can be used for comparison during periodic maintenance, troubleshooting or following repair or adjustment.

Transmitter Clock Test

Specifications

Table 5-2. Transmitter Clock Specifications

Internal Frequency:	2.48832 GHz ±3.5 ppm (All Modules) 1.24416 GHz ±3.5 ppm (J4233A/34A/35A) 622.08 MHz ±3.5 ppm (J4233A/34A/35A) 155.52 MHz ±3.5 ppm (J4233A/34A/35A)
Measured Frequency:	77.76 MHz ±3.5 ppm (±272.26 Hz)
Aging:	±1 ppm/year (±77.76 Hz)
Level:	unbalanced TTL (J2330A/31A/32A)
	ac coupled, nominal ECL (J4233A/34A/35A)

Description

This test verifies that the 2.5 GHz internal Clock is within its specified limits, by measuring a divided-down version of the clock at the **Ref Clock Out** port. The **Ref Clock Out** port has a SMA-type connector that outputs an unbalanced clock signal. The limits take in to account the accuracy, stability and ageing of the clock and assume that the module is within its calibration cycle.

Equipment Required

Frequency Counter: 5335A Option 010

Cable, SMA to SMA (0.5 meter): E1675-64210

Adapter, SMA (female) to BNC (male): 1250-2015

Procedure

- 1. Connect the **Ref Clock Out** port to the Frequency Counter.
- 2. Select **Rate**: 2.488G on the Soft Front Panel.
- 3. Check that the measured clock frequency is 77,760000 MHz ± 3.5 ppm. (Equivalent to an internal clock frequency of 2.48832 GHz ±11.2 kHz.)

J4233A/34A/35A Modules Only

- 4. Repeat steps 2 and 3 for **Rates: 1.244G, 622M** and **155M**.
- 5. Disconnect the Frequency Counter.

Transmitter Optical Power and Wavelength Test

Specifications

Table 5-3. J4230A, J4233A Optical Power and Wavelength Specifications

Wavelength:	1310 nm ±20 nm
Power Output:	Maximum: +2 dBm Minimum: -1 dBm Typical: +1 dBm
Rate	2.488G (All); 1.244G; 622M; 155M (J4233A)
Safety Class:	Class 1

Table 5-4. J4231, J4234A Optical Power and Wavelength Specifications

Wavelength:	1550 nm ±5 nm	
Power Output: Std.	Maximum: +2 dBm Minimum: -1 dBm Typical: +1 dBm	
Option 001	Maximum: +4 dBm Minimum: +1 dBm Typical: +3 dBm	
Rate	2.488G (All); 1.244G; 622M; 155M J4234A)	
Safety Class:	Class 1	

Table 5-5. J4232A, J4235A
Optical Power and Wavelength Specifications

Option:	Wavelength:	Option:	Wavelength:
001	1536.61 nm ±0.07 nm	031	1548.51 nm ±0.07 nm
002	1537.01 nm ±0.07 nm	032	1548.91 nm ±0.07 nm
003	1537.40 nm ±0.07 nm	033	1549.32 nm ±0.07 nm
004	1537.90 nm ±0.07 nm	034	1549.72 nm ±0.07 nm
005	1538.19 nm ±0.07 nm	035	1550.12 nm ±0.07 nm
006	1538.59 nm ±0.07 nm	036	1550.52 nm ±0.07 nm
007	1538.98 nm ±0.07 nm	037	1550.92 nm ±0.07 nm
008	1539.38 nm ±0.07 nm	038	1551.32 nm ±0.07 nm
009	1539.77 nm ±0.07 nm	039	1551.72 nm ±0.07 nm
010	1540.17 nm ±0.07 nm	040	1552.12 nm ±0.07 nm
011	1540.56 nm ±0.07 nm	041	1552.52 nm ±0.07 nm
012	1540.96 nm ±0.07 nm	042	1552.92 nm ±0.07 nm
013	1541.35 nm ±0.07 nm	043	1553.33 nm ±0.07 nm
014	1541.75 nm ±0.07 nm	044	1553.73 nm ±0.07 nm
015	1542.14 nm ±0.07 nm	045	1554.13 nm ±0.07 nm
016	1542.54 nm ±0.07 nm	046	1554.53 nm ±0.07 nm
017	1542.94 nm ±0.07 nm	047	1554.94 nm ±0.07 nm
018	1543.33 nm ±0.07 nm	048	1555.34 nm ±0.07 nm
019	1543.73 nm ±0.07 nm	049	1555.75 nm ±0.07 nm
020	1544.12 nm ±0.07 nm	050	1556.15 nm ±0.07 nm
021	1544.53 nm ±0.07 nm	051	1556.55 nm ±0.07 nm
022	1544.91 nm ±0.07 nm	052	1556.95 nm ±0.07 nm
023	1545.32 nm ±0.07 nm	053	1557.36 nm ±0.07 nm
024	1545.72 nm ±0.07 nm	054	1557.76 nm ±0.07 nm
025	1546.12 nm ±0.07 nm	055	1558.17 nm ±0.07 nm
026	1546.52 nm ±0.07 nm	056	1558.57 nm ±0.07 nm
027	1546.92 nm ±0.07 nm	057	1558.98 nm ±0.07 nm
028	1547.32 nm ±0.07 nm	058	1559.39 nm ±0.07 nm
029	1547.72 nm ±0.07 nm	059	1559.79 nm ±0.07 nm
030	1548.12 nm ±0.07 nm	060	1560.20 nm ±0.07 nm
		061	1560.61 nm ±0.07 nm
Power Output:			
Maximum: +2 dBm			
Minimum: -1 dBm			
Typical: +1 dBm			
Rate: 2.488G (All), 1.244G, 622M; 155M (J4235A)			
Safety Cla	Safety Class: Class 1		
,			

Description

This test verifies the Optical Output Power and Wavelength at each of the Transmitter optical ${\bf Out}$ ports.

Equipment Required

Lightwave Multimeter 8153A

Power Meter Sensor Module: 81536A

Optical Attenuator 8156A

Multi-wavelength Meter 81620B

Optical Cables: 11871A (x 2)

FC/PC Optical Connectors: 81000FI (x 2)

Procedure

J4230A, J4233A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- 1. Switch on the VXI mainframe and check that all the Transmitter Module **Laser On** LEDs are ON (indicating that the lasers are enabled).
- 2. Using the Soft Front Panel, select the following parameters:

Transmitter Setup

Transmitter Tx 1
Channel 1

Format SDH

Rate 2.488G

Pattern PRBS 23

- 3. Connect the Transmitter module, **Channel 1** optical **Out** port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 4. Set up the 8153A as follows:
 - a. Press **PARAM** key to display wavelength $[\lambda]$
 - b. Using (and keys, set the wavelength to 1310 nm.
 - c. Press **PARAM** key to display Time [t]
 - d. Using (-), and (-) keys, set the time to 20 ms.
 - e. Press **PARAM** key to display REF.
 - f. Using (\clubsuit) and (\clubsuit) keys, set the REF to 0.00 dBm.

- g. Press PARAM key to display CAL.
- h. Using (and keys, set the CAL to 0.000 dBm.
- i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 5. Press **MODE** to select the Power Level measurement on the 8153A.
- 6. Check the optical power reading is between −1 dBm and +2 dBm.
- 7. Disconnect the optical cable from the 8153A and connect it to the 81620B.
- 8. Press **PRESET** on the 81620B.
- 9. Check that the wavelength is $1310 \text{ nm} \pm 20 \text{ nm}$.
- 10. For J4233A Modules repeat steps 2 to 9 at **Rates : 1.244G, 622M** and **155M**.
- 11. Repeat steps 2 to 10 for **Channel 2, 3** and **4** optical **Out** ports.

J4231A, J4234A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- Switch on the VXI mainframe and check that all the Transmitter Module Laser On LEDs are ON (indicating that the lasers are enabled).
- 2. Using the Soft Front Panel, select the following parameters:

Transmitter Setup

Transmitter	Tx 1
Channel	1
Format	SDH
Rate	2 488G

Pattern PRBS 23

- 3. Connect the Transmitter module **Channel 1** optical **Out** port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 4. Set up the 8153A as follows:

- a. Press **PARAM** key to display wavelength $[\lambda]$
- b. Using (and keys, set the wavelength to 1550 nm.
- c. Press **PARAM** key to display Time [t]
- d. Using (+) and (+) keys, set the time to 20 ms.
- e. Press **PARAM** key to display REF.
- f. Using \leftarrow , \rightarrow and \rightarrow keys, set the REF to 0.00 dBm.
- g. Press **PARAM** key to display CAL.
- h. Using (-), \rightarrow and (-) keys, set the CAL to 0.000 dBm.
- i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 5. Press **MODE** to select the Power Level measurement on the 8153A.
- 6. Check that the optical power reading is between -1 dBm and +2 dBm. For Option 001 modules, check that the optical power reading is between +1 dBm and +4 dBm.

Note

The 8153A measures +3 dBm maximum input optical power. For Option 001 modules with optical output power > +3 dBm, the Power Meter reading will go out of range. Insert the 8156A Optical attenuator between the optical Out port and the 8153A. This will add a 4 dB insertion loss into the optical signal path. Check that the optical power reading is now between -3 dBm and 0 dBm. (Equivalent to optical power in the range +1 dBm to +4 dBm, through an insertion loss of 4 dB.)

- 7. Disconnect the optical cable from the 8153A and connect it to the 81620B.
- 8. Press **PRESET** on the 81620B.
- 9. Check that the wavelength is $1550 \text{ nm} \pm 5 \text{ nm}$.
- 10. For J4234A Modules repeat steps 2 to 9 at **Rates : 1.244G, 622M** and **155M**.
- 11. Repeat steps 2 to 10 for **Channel 2, 3** and **4** optical **Out** ports.

J4232A, J4235A Transmitter Modules

WARNING

At switch-on, the Transmitter Lasers are enabled in the ON condition. Ensure that at any unused optical "Out" ports are fitted with an optical cover BEFORE switching on.

- 1. Switch on the VXI mainframe and check that all the Transmitter Module **Laser On** LEDs are ON (indicating that the lasers are enabled).
- 2. Using the Soft Front Panel, select the following parameters:

Transmitter Setup

	- C10.P
Transmitter	Tx 1
Channel	1
Format	SDH
Rate	2.488G
Pattern	PRBS 23

- 3. Connect the Transmitter module **Channel 1** optical **Out** port to the 8153A (ensure that all connections are tight and that the cable has no twists).
- 4. Set up the 8153A as follows:
 - a. Press **PARAM** key to display wavelength $[\lambda]$
 - b. Using \leftarrow , \rightarrow and \downarrow keys, set the wavelength to the wavelength shown on the **Out** port of the module.
 - c. Press **PARAM** key to display Time [t]
 - d. Using (\clubsuit) , (\clubsuit) and (\clubsuit) keys, set the time to 20 ms.
 - e. Press PARAM key to display REF.
 - f. Using (+), \rightarrow and (-) keys, set the REF to 0.00 dBm.
 - g. Press PARAM key to display CAL.
 - h. Using (\clubsuit) and (\clubsuit) keys, set the CAL to 0.000 dBm.
 - i. Press the **ZERO** key on the Power Meter to calibrate the Power Meter is now ready.
- 5. Press **MODE** to select the Power Level measurement on the 8153A.
- 6. Check that the optical power reading is between −1 dBm and +2 dBm.
- 7. Disconnect the optical cable from the 8153A and connect it to the 81620B.
- 8. Press **PRESET** on the 81620B.

- 9. Check that the wavelength is within the limits shown in the specifications in Table 5-5, "J4232A, J4235A Optical Power and Wavelength Specifications", on page 49.
- 10. For J4235A Modules repeat steps 2 to 9 at **Rates: 1.244G, 622M** and **155M**.

11. Repeat steps 2 to 10 for Channel 2, 3 and 4 optical Out ports.

Performance Test Record

J4230A, J4231A, J4232A, J4233A, J4234A, J4235A SpectralBER DWDM Transmitter Modules

Location: Serial No.:

Tested by:

Temperature: Certified by:

Humidity: Date:

Page	Test Description		Result			
			Min.	Actual	Max.	
	Transmitter Clock Test					
	Step 3	77,760,000 MHz	77,759,650 MHz		77,760,350 MHz	
	Step 4	Repeat 3		Pass/Fail		
	Transmitter Optical Power & Wavelength Test J4230A, J4233A					
	Step 1	Laser LEDs		On/Off		
	Step 6	>-1 dBm <+2 dBm	-1 dBm		+2 dBm	
	Step 9	1310 nm	1290 nm		1330 nm	
	Step 10	Repeat 2 to 9		Pass/Fail		
	Step 11	Repeats 2 to 10		Pass/Fail		
	Transmitte J4231A, J	er Optical Power & W 4234A	avelength Test			
	Step 1	Laser LEDs		On/Off		
	Step 6	Standard: >-1 dBm <+2 dBm Option 001:	-1 dBm		+2 dBm	
		=1 dBm to +4 dBm	+1 dBm		+4 dBm	
	Step 9	1550 nm	1545 nm		1555 nm	
	Step 10	Repeat 2 to 9		Pass/Fail		
	Step 11	Repeat 2 to 10		Pass/Fail		

Page	Test Description		Result			
			Min.	Actual	Max.	
	Transmitter Optical Power & Wavelength Test J4232A, J4235A					
	Step 1	Laser LEDs		On/Off		
	Step 6	>-1 dBm <+2 dBm	-1 dBm		+2 dBm	
	Step 9	See Table 5-5. on page 49		Pass/Fail		
	Step 10	Repeat 2 to 9		Pass/Fail		
	Step 11	Repeat 2 to 10		Pass/Fail		

Index

A	IVI		
access LED, 18	module		
adapters	addressing, 27		
optical interface, 25	control, 33		
SMA, 25	installing and removing, 26		
addressing, 27	overview, 17		
	slot location, 28		
С	verify installation, 28		
cleaning			
cabinet, 20	0		
optical connector, 21	operating environment, 23		
clock test	optical		
performance, 47	interface adapters, 25		
verification, 37	power and wavelength verification test, 38		
cooling requirements, 24	wavelength, 17		
current drawn	overview, module, 17		
J4230A, J4231A, 24			
J4233A, J4234A, J4235A, 24	В		
, , ,	P		
D	performance test record, 55		
	power requirements, 24–25		
dimensions, 22	preparation for use, 25		
E	R		
environment, operating, 23	recommended test equipment		
environment, operating, 23	performance tests, 45		
_	verification tests, 35		
I	verification tests, 33		
information			
legal and safety, 2	S		
where to find it, 1	safety precautions		
inspection, initial, 23	operator, 19		
	service engineers, 19		
1	shipping container inspection, 22–23		
laser on LED, 18	signal structure, 17		
LEDs	SMA adapters, 25		
access, 18	structure of signal, 17		
laser on, 18			
legal and safety information, 2	Т		
icgai and saicty information, 2	test equipment recommended		
	performance tests, 45		
	verification tests, 35		
	verification tests, 33		

test record performance, 55 verification, 44

wavelength, optical, 17 weight, 22

٧

verification test record, 44